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Higher-Order Analysis of Nutrient Accumulation Data

E. John Sadler* and Douglas L. Karlen

ABSTRACT

Biomass and nutrient accumulation data have often been obtained
to determine rates of nutrient uptake. Traditionally calculated as the
difference in accumulation divided by elapsed time, rate values thus
obtained are slopes of linear interpolations between points on the ac-
cumulation curve. That implies an assumption of constant uptake rate
during the observation period. Our objective was to illustrate a higher-
order interpolant that is not subject to such assumptions. With it, one
obtains smooth curves consistent with the assumption that daily up-
take rates are somewhat related. The abrupt changes in rates deter-
mined with linear interpolation are consistent with daily rates that
are unrelated. Analyses of historical and recent data showed that
additional information may be obtained from higher-order analysis
methods. Cubic interpolation methods were applied to the accumu-
lation curve to obtain continuous, smooth nutrient uptake curves. The
programs used are described, and two sample data sets of corn (Zea
mays L.) growth and N accumulation illustrate the strengths, weak-
nesses, and inherent assumptions of this analytical technique. In gen-
eral, this technique can be used if the objective is to analyze intraseasonal
variation in growth or uptake rates determined from sparse data.
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UTRIENT REQUIREMENTS for crops are often in-
ferred from amounts of nutrients accumulated by
crops. Typically, such data sets consist of time series
of concentrations and of corresponding aboveground
dry matter amounts. The product of these two series
results in a time series of aerial nutrient accumulation.
Traditionally, average rates of accumulation between
sampling dates have been calculated as the difference
in accumulated nutrient divided by elapsed time (e.g.,
Henderson and Kamprath, 1970). The resulting series
of estimates of accumulation rate is strictly applicable
only to the midpoint of the sampling interval. Esti-
mates of accumulation rate at any other time require
further interpolation. Numerically, this procedure is
equivalent to evaluating a linear interpolation of the
accumulated curve at the midpoint of each interval.
Evaluating the original interpolant at other points re-
sults in biases caused by the time shift from the mid-
points, since the derived rate is constant during cach
interval.

General methods of interpolation and smoothing data
date from the 1800s. For various recasons, rescarchers
often smooth through variation in time series data rather
than analyzing it. Typically, a least-squarc fit of a
polynomial curve has been used for this purpose (e.g.,
Clawson et al., 1986). When one must detect scasonal
trends underlying variation, smoothing through noisy
data may be appropriate. However, if variation is real
(and quantitatively important), then smoothing through
it does two undesirable things. First, it hides the var-
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iation itself, which reduces the chance of important
information being acted upon; second, estimates are
biased toward the running average value.

If one assumes that nutrient accumulation rates from
day to day are related because of similarities in the
crop over short periods, then one can estimate intra-
seasonal variation in both accumulation and accumu-
lation rate using higher-order polynomial interpolation
methods. Many techniques to analyze time series ex-
ist, each with its own limitations and strengths. Some,
such as the fast Fourier transform (Kimball, 1974),
require regularly spaced data, which is not generally
the case with nutrient sampling. Others, such as con-
volution methods (Gorry, 1990), are designed to pro-
vide smoothed values or derivatives only at the time
of sampling, which may not be useful for nutrient
accumulation studies. Eliminating these techniques on
the basis of data requirements leaves two classes of
techniques that suit the general purpose of analyzing
nutrient accumulation data, for which a differentiable
expression is required over the entire range of data.

The first class of methods provides some smoothing
of the data. This is desirable for noisy data, especially
when the data sets are large. The least-square fitting
of a single equation (linear regression, higher-order
polynomial regression, exponential regression, etc.)
belongs to this class. These are especially useful for
simple patterns. Some patterns are described well by
theoretical expressions (e.g., the Michaelis—Menton
equation), which are also in this class. In general,
variation in nutrient accumulation patterns occurs for
reasons not yet fully understood, so that a general-
purpose fitting method is required. Several published

methods fit this description, including quadratic
splines (DuChateau et al., 1972), cubic splines (Kim-
ball, 1976), and sliding polynomials (Thomas et al.,
1977). : :

The second class of methods fits the curve through
each data point without smoothing. These methods are
preferable when the uncertainty at each point is small
compared with the differences among points, or when
one can explain differences using collateral data.
Technically, such methods are interpolants. Linear in-
terpolation is most common, and quadratic and cubic
interpolants (Erh, 1972) are simply extensions of this
general technique to second- and third-order polyno-
mials.

Choosing between these two classes of techniques
requires knowledge of tlie objectives of the analysis
and the capabilities of the methods. If the objective is
finding trends in noisy data, one usually uses some
smoothing technique. On the other hand, for analysis
of variation in time series, one usually cannot use
smoothing and therefore requires an interpolation
technique. Mathematical characteristics of the candi-
date equations also differ. For instance, differentiating
a linear interpolation results in a sequence of plateaus,
or stair-steps, in the derivative of the interpolated
function. Similarly, a quadratic interpolation, when
differentiated, results in a derivative that looks like a
saw-tooth pattern. At the cubic or higher order, the
derivative is smooth and continuous in mathematical
terms.

Such considerations resulted in our choice of a cu-
bic spline interpolant to analyze nutrient and dry mat-
ter accumulation data to produce accumulation rates

Table 1. Sample data set for cubic spline interpolation. Data are aerial N accumulations for corn grown near Florence, SC, in 1980
(Karlen et al., 1987b). Plant population was 89 000 plants ha-; final yield was 14.0 Mg ha-'.

Input data set}

7
0 0

43.0 26.8

50.0 64.3

57.0 126.2

64.0 160.2

82.0 191.0
113.0 237.5 ;

Output data set for interpolated _@aluesi
Days Amount Rate
0.0000000E + 00 0.0000000E + 00 —0.5960464E — 07
0.1000000E + 01 —0.4062169E — 01 —0.7993070E - 01
0.2000000E + 01 —0.1572362E + 00 -~0.1519856E + 00
0.1110000E + 03 0.2371584E + 03 0.3693156E + 00
0.1126000E + 03 0.2374385E+ 03 0.1893706E + 00
0.1130000E + 03 0.2375340E + 03 0.0000000E + 00
Coefficient file (Y = ¢, + ¢, X + X + ¢, X%)§
Xiow Xhign Co G (&3 €3
6

0.0000000F. + 00 43.00000 0.0000000E + 00 —5.9604645E — 08 —4.1934248E - 02 1.3126194E—03
43.00000 50.00000 26.82600 3.674754 i 0.1273936 1.6263664E — 02
50.00000 57.00000 64.37000 7.849023 0.4689306 —4.6649452E — 02
57.00000 64.00000 126.2900 7.556582 —0.5107079 1.7888077E — 02
64.00000 82.00000 160.2970 3.036219 -0.1350583 3.4092853E—03
82.00000 113.0000 191.0730 1.487945 4.9043078E — 02 —1.5707999E - 03

T The first line holds the number of pairs. Time, the first column,
1 Amount is in kg N ha-!, and rate is in kg N ha-

§ Coefficient file for data above. The first line holds number of subranges.

is in days after planting. Values for N, the second column, are in kg N ha-!.
' d-% Dots indicate omission of Days 3 to 110, to shorten the table.
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Example of MathCad worksheet to compute cubic spline interpolant.

Define ha as a substitute for the built-in unit hectare:
and d as a substitute for the built-in unit day:

Given the following data set (Table 1):

[0 | 0
43 2€.8
50 64.3

Days .= | 57 |-d AccN = | 126.2 |-
64 160.2
82 191.0
| 113 | 12375

kg

ha

ha = 1-hectare

a.
d = 1-day

Define the index
for these vectors.

Perform the MathCad function to provide derivatives at each point.

vs = Ispline(Days, AccN)

Make a time vector t on which to evaluate the interpolant.

t =0d,1.d..113-d
Define the interpolant function.
Acc(t) = interp(vs, Days, AccN, 1)

And its derivative.

Rate(t) = 3 Acc(t)
at

Plot the accumulation function...

300X '

ha

.

Aoe(t)

: Acc:Ni
o

L] | ‘ ]
ha g.¢ t.Days, 120.d

Evaluate the functions for some point, say 100 days.

Acc(100-d) = 216.227 %9
a

Rate(100-d) = 1.578 —9

(ha-d)

...and the rate function.

10X9__ I !

(had) [
Rate(t)

o kg
_(ha-d)

7

5_k3 i |
(ha-d) 0.4 120d

Fig. 1. Sample MathCad worksheet to compute the cubic spline interpolant for the data in Table 1.

at any point in time. This was done originally to com-
pare recent and historical nutrient accumulation for
corn (Karlen and Sadler, 1986), and since has been
used to analyze differences in accumulation rate for
high- and low-population corn (Karlen et al., 1987b),
for partitioning of nutrients among plant parts for corn
(Karlen et al., 1987a, 1988), for describing nutrient
accumulation in soybean [Glycine max (L.) Merr.]
(Karlen and Sadler, 1989), and for describing nutrient
accumulations for soft red winter wheat (Triticum aes-
rivum L.) (Karlen and Sadler, 1990).

Continued requests for information about this tech-
nique, continued confusion about its application, and

the development of an easier way to perform it all-led
to our decision to document the technique as applied
to nutrient accumulation rates. The utility of the method
hinges on ease of use, the assumptions used, and inter-
pretation of the results. Our objective was to docu-
ment the rationale and procedures for the analysis of
nutrient accumulation data using the cubic spline in-
terpolation, with an illustration of the procedure, in-
cluding data form and results.

MATERIALS AND METHODS

The cubic spline interpolation algorithm (Burden et al., 1981)
was programmed in FORTRAN-77 (ANSI X3.9-1978). It has
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Fig. 2. Sample results from the input data set shown in Table
1, computed using the FORTRAN implementation. Original

data are aerial N accumulations for corn grown near Florence,
SC, in 1980 (Karlen et al., 1987b).

been run on both a desktop personal computer and a minicom-
puter and required <5 s CPU time on either. Similar alge-
rithms are available from computer software companies (e.g.,
Turbo Pascal’s Numeric Toolbox, from Borland International,’
Scotts Valley, CA) and from numerical methods texts (e.g.,
Press et al., 1989, which has Pascal, FORTRAN, and C ver-
sions). Microcomputer-based mathematical processors can be
used as well (e.g., MathCad, from Mathsoft, Inc., Cambridge,
MA). Those inclined to understand the numerical details of
the solution of the cubic spline are referred to Burden et al.
(1981) or Press et al. (1989). The FORTRAN program is =100
lines of FORTRAN code, and totals <4K in size for the source
code. Users may request a listing from the senior author.

The two forms of the cubic spline in Burden et al. (1981)
differ with respect to the conditions at either end of the data
series. The free, or natural, spline has no constraints; the curve
is free to pass through the endpoints at any slope. The clamped
spline, which we used, requires input values for the slopes at
the two endpoints. For our purposes, assuming data were taken
up to maturity suggested that zero rates are usually sufficient
for both endpoints.

An example input data set from Karlen et al. (1987b), shown
in Table 1, illustrates the input requirements and operation of
the program. For input, the program prompts for the source
filename and then for the-initial and final derivatives. For out-
put, the program creates two files. The first has the same
filename as the input file and a file extension of GEN. Each
record corresponds to 1 d, and has three columns: the time in
days after planting, the interpolated value for accumulated nu-
trient for that day, and the rate of accumulation (slope) for that
day. The second output file uses the same filename as the
input, but with a file extension of COE, for coefficients. It has
a line with the number of subranges (computed as the number
of points minus one), which is the-number of lines that follow.
Each of these lines holds the low and high x-value for the
subrange, plus the four coefficients for the cubic polynomial
that applies to that range. ,

For most purposes, such as creating graphs of these data,
the generated table of daily values is sufficient. However, the
resulting compound polynomial can be evaluated for any value.

~ The coefficient array shown in Table 1 has a number of rows
" equal to the number of subranges (original number of points
minus 1), and four columns, which are the coefficients ¢, c,,
¢, and ¢, of the cubic polynomial for cach subrange. Users
wishing to manually evaluate these polynomials must define

' Mention of a trademark is for the reader’s convenience and
does not imply endorsement by the USDA.

an x-value that is the duration from the start of the proper
subrange, and use it in the evaluation of the corresponding
polynomial. Because of this convention, the first coefficient is
always the same as the original y-value. From this point, eval-
uating the polynomial or its derivative is a simple matter. In-
tegration between two points is similarly easy, with the
precaution that, if the two points are in different subranges,
the polynomial must be integrated separately for cach subrange
and then summed.

Interpolants similar to that programmed in FORTRAN are
available in the computer-based mathematical scratchpad
MathCad. A worksheet illustrating the cubic spline intcrpolant,
with one variation from the FORTRAN version, is shown in
Fig. 1. The data series from Table 1 is input, and an inter-
mediate function is computed. The interpolant is then com-
puted from the intermediate. The difference between the
worksheet version and the FORTRAN version is that MathCad
provides linear, quadratic, and cubic constraints at the end-
points, where the Burden et al. (1981) source provides only
fixed derivatives, which we used, or unconstrained derivatives.
In the scratchpad, the most constrained form appears to be the
one with linear endpoints.

The effect of data frequency was illustrated with a data set
that had sufficient length and frequency that subsamples could
be taken from the base set and compared among themselves
and to the base data set. Sayre (1948) published aerial dry
matter accumulation for corn with 31 points, one taken every
3 d. From this set, two sets of 6-d samples were selected by
allocating alternate points to one of two sets. Similarly, every
third point was put in three 9-d data sets, and every fifth in
five 15-d sets. The cubic spline was run on each of these data
sets.

RESULTS AND DISCUSSION
The results for the example data set are shown in Fig.

2, which was developed using the FORTRAN program

and the generated data shown in Table 1. They illustrate
the value of the interpolation technique during the period
in which data were_taken about weekly. Results from
any interpolation method depend on data frequency. The
31-d period with no data between the last two points
leaves the curve’s shape dependent on the assumption of
zero rate at the endpoint. The small bulge in the curve
between Days 85 and 100 could have been reduced by
setting the final derivative to some value approximating
the average rate during the final period. This was not
done, however, because the assumption of zero growth
at physiological maturity requires that the growth rate at
that point has decreased to zero. A second aspect, also
related to data spacing, is shown by the period between
0 and 30 d after planting, in which the curve is actually
below zero, and therefore nonsensical, for this data set.
Although the input data file started with zero at planting,
the initial subrange resulted in poor information because
of the wide spacing of the data. Normally, this interval
is-of less interest than the period of rapid growth and is
disregarded. If it is of interest, however, data during this
interval must be collected at an adequate frequency.
The results from the MathCad worksheet are shown
in Fig. 1. There are few differences from the FORTRAN
version, until the last subrange. The linear constraint on
the final derivative produced a nearly constant rate for
the final interval (Fig. 1). The assumption of zero uptake
at physiological maturity forced a small rise before the
final decrease to zero (Fig. 2). In absolute terms, the
difference between the two curves is very small. How-
ever, interpretation of the assumptions used and their
effect on the results is particularly salient. The nearly
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Fig. 3. Comparison of rates derived from the 3-d frequency base data set (Sayre, 1948) with those derived from (a) the two 6-d
frequency data sets, (b) the three 9-d frequency data sets, and (c) the five 15-d frequency data sets.

constant rate of uptake for the last few weeks is visually
satisfactory; nothing exists in the data itself to suggest
otherwise. However, if it is more likely that the plant
slowly decreased uptake to zero when it reached matu-
rity, then the curve in Fig. 2, in spite of the small hump
during the last interval, may be a closer approximation
to the actual rate of uptake. Questions such as these must
be considered when choosing the methods and assump-
tions, and also when choosing the boundary conditions.

Effects of data frequency are illustrated by the data of
Sayre (1948). Results from the 6-d sets are compared
with the base 3-d set in Fig. 3a. Both 6-d sets show less
short-term variation than the 3-d base set, though they
all show nearly the same seasonal maximum (within 10%)
between Day 70 and 75. The 9-d sets show correspond-
ingly less variation than the 6-d sets (Fig. 3b), and the
results for all five of the 15-d sets show very nearly the
same scasonal trends (Fig. 3c). Decreasing data fre-
quency moderates the variation in the rate curve. The
average rate between points must integrate to the correct
total on the day of measurement, because the splinc curve
passes through each point in the accumulated amount
data series. Spacing observations farther apart makes the
rate curve approach the average rate for the now-longer
period.

Users of this technique must consider the significance
of the variation from the long-term mean rate. If the
variation is important, or the uncertainty in the obser-
vation is small compared with the variation, this tech-
nique should be valid. If variation about an observation
Is noise in a signal, the user might wish to use one or
the other of the smoothing techniques mentioned earlier.

Data spacing in a series may be critical if data are irreg-
ularly spaced and rates are ‘highly variable. Increased
frequency of observation within a data set may lead to
susceptibility to oscillation in the polynomial as it at-
tempts to pass through each point, especially if errors
accumulate in opposite directions. For instance, an un-
derestimate followed closely by an overestimate will re-
sult in a rate much higher than if the opposite occurred.

SUMMARY AND CONCLUSIONS

The cubic spline interpolation can be a useful too] for
a wide range of rate determinations. Because the curve
passes through each datum, the method is best suited to
data for which variation at a time is less than variation
between times. The user must decide whether the vari-
ation is information or noise. The information gained is
directly related to the data input and assumptions made;
higher sampling frequencies should be used if short-term
variation is of interest.
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